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Level of Ambition 

• Separation of concerns 
– “First, you get a million dollars …” 

• Run-time agnostic 
– Task-based 

• GCD, PFunc, PLASMA, StarSs/OMPSs, Supermatrix, etc. 

– Traditional 
• MPI, OpenMP, Pthreads, SHMEM, SPI, etc … 

– PGAS 
• CAF, Chapel, Fortress, Titanium, UPC, X10 … 

• Examples 
– Simple 
– Results can be applied somewhat more broadly 
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Tabloid Programming 

• Determine what is going on: 
– In my neighborhood & in my world 
– Where is the cut-off? 

• Summarizing instrumentation data 
– Core(s)/Thread(s) devoted to it? 
– Descriptive, Predictive, and Prescriptive Analytics 

• What would I like to do with the information 
– Annotate tasks/alter function pointers/re-time 
– Drive towards a profile (later) 
– Let others know my condition (Social Media Prog.?) 

• E.g. “doing error correction” 
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Performance Counters & Power 
Measurement 

• Performance counters 
– Level of granularity (time, floorspace, etc.) 

– Post mortem analysis vs. in-flight steering 

• Why power measurement 
– Synthesize info, can be fine-grained (Goal: Perf.) 

– Exascale (Goal: … well … power reduction) 
• To save power/minimize heat in aggregate or instantaneous  

• Why both 
– Can disambiguate cases otherwise identical 

– Power is a shared resource (at a different level) 
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Shared Resource Hierarchy 

Registers 

L1 Cache 

L2 Cache 

Main Memory 

Power Measurement 

Power Supply, Network, Disk Drive, etc. 
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Case Studies 

• DGEMM 
– Synchronization strategies 
– Hierarchical, high-performance 

• HPL Benchmark 
– Leveraging available data: a silver lining in synchronization  
– Utilizing additional hardware features 

• Stencil Computations 
– Performance counters to guide bandwidth and instruction mix 
– Potential for linking/merging threads and “deep” synchronization 

• Lanczos Iteration Methodology 
– s-Step and Pipeline: Reducing synchronization penalty, count, or both 

• Auto-tuner 
– Utility of off-line system 
– A framework for the incorporation of new “operations” (atomics) 
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Heavy- vs. Lightweight 
Synchronization: DGEMM 

• Goal: Fewer explicit synchronization points 
– Explicit vs. implicit synchronization 

– Skew and anti synchronization 

• Implicit synchronization through cooperation 
– Stitching threads and cores 

• At various levels of the cache hierarchy 

– Interleaving nodes lower on the pyramid 

• What are the benefits 
– Realized 

– Potential 
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BlueGene/Q Compute chip 
• 360 mm²  Cu-45 technology  (SOI) 

–  ~ 1.47 B transistors 
 

• 16 user + 1 service processors  
–plus 1 redundant processor 
–all processors are symmetric 
–each 4-way  multi-threaded 
–64 bits PowerISA™ 

–1.6 GHz 
–L1 I/D cache = 16kB/16kB 
–L1 prefetch engines 
–each processor has Quad FPU 
 (4-wide double precision, SIMD) 

 
–peak performance 204.8 GFLOPS@55W 

 
• Central shared L2 cache: 32 MB  

–eDRAM 
–multiversioned cache  

will support transactional memory,  
                   speculative execution. 

–supports atomic ops 
 

• Dual memory controller  
–16 GB external DDR3 memory 
–1.33 Gb/s 
–2 * 16 byte-wide interface (+ECC)  

 
• Chip-to-chip networking 

–Router logic integrated into BQC chip. 
 

• External IO   
–PCIe Gen2 interface 

System-on-a-Chip design : integrates processors,  

memory and networking logic into a single chip 
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BG/Q Processor Unit 

• A2 processor core 
– Mostly same design as in PowerEN™ chip 

– Implements 64-bit PowerISA™ 

– Optimized for aggregate throughput: 

• 4-way  simultaneously multi-threaded (SMT) 

• 2-way  concurrent issue 1 XU (br/int/l/s) + 1 FPU 

• in-order dispatch, execution, completion 

– L1 I/D cache = 16kB/16kB 

– 32x4x64-bit GPR 

– Dynamic branch prediction 

– 1.6 GHz @ 0.8V 
 

• Quad FPU 
– 4 double precision pipelines, usable as: 

• scalar FPU 

• 4-wide FPU SIMD  

• 2-wide complex arithmetic SIMD 

– Instruction extensions to PowerISA 

– 6 stage pipeline 

– 2W4R register file (2 * 2W2R) per pipe 

– 8 concurrent floating point ops (FMA)  
     + load + store 

– Permute instructions to reorganize vector data 

• supports a multitude of data alignments 
 

QPU:  Quad FPU 
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Streaming 16x16 Outer Products on BG/Q 
Basis of a Better DGEMM 
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Streaming 16x16 Outer Products on BG/Q 
Basis of a Better DGEMM 
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• Of course, one can 
go further 
– Threads 0,1 

prefetch A for 2 & 3 
– Threads 0,2 

prefetch B for 1 & 3 
– Interleave the data 

(every thread 
prefetches every 4th 
expected request) 
• DGEMM specific 
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Streaming 16x16 Outer Products on BG/Q 
Basis of a Self-Synchronizing DGEMM 
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What happens if Thread 
1 falls behind? 

Thread 
1 Lags 

Thread 
0 and 3 

Lag 

Thread 
2  

Slows 

Thread
1 

Caches 
Up** 

Await 
Next 
Issue 
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Streaming 16x16 Outer Products on BG/Q 
A More Performance-Robust DGEMM 
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Benefits of Layered Implicit 
Synchronization 

• Extremely infrequent explicit barriers 
• Fewer instructions executed 

– No “expected false” prefetches 

• 4 bytes/cycle/core L2 bandwidth 
– More reliably 

• Similar approach 
– Quadruple SIMD length/double bandwidth  

• |loads| <= |FMAs| ((1x4)x(32x10) kernels) 
• Could be fed by an 8 byte/cycle L2 
• Instruction mix continues to allow explicit prefetch 

• But is it only good for DGEMM? 
– Cooperative prefetching is more generally applicable 
– Works with hand-tuned ASM (need a lot of details to work well) 
– Some parts better-suited for compilers (detail management) 
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Skew and Anti Synchronization 

• Skew synchronization 
– Goal: smoothing burst requests on a shared resource 

– Implement: differential blocking, kernel/method used 

– Result: staggering of task initialization/completion 

• Anti synchronization 
– Akin to hands-on, even cycle-by-cycle, skewing 

– Enforce staggering, usually on a finer grain 
• Through implicit or explicit means (simple example …) 

– Thread 0 prefetches 100 cycles ahead of thread 1 

– Thread 1 prefetches 8 cycles ahead of thread 0 
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Shared Resource Hierarchy 

Registers 

L1 Cache 

L2 Cache 

Main Memory 

Power Measurement 

Power Supply, Network, Disk Drive, etc. 

• Cooperative 
Prefetching 
– Including Disk 

• Yielding Power Tokens 
– Upon barrier arrival 
– Exascale/load bal. 

• Keep hw together 
– But not too close 
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Trade-offs in Synchronization: HPL 
Benchmark 

• Background: How is HPL asynchronous? 
• What is the downside to synchronization 

– Performance 

• What are the potential benefits 
– Multiple link usage/5D torus 
– Consistent numerical results 

• Steps to reduce the disadvantages 
– What do timers tell us 
– Performance counters 
– Power measurements 

1/12/2012           ICERM 26 



What do we know and when do we 
know it? 

• And how do we know it? 

• A single step: 
– That panel factorization is a bottleneck (timers) 

• Successive iterations: 
– Panel factorization is getting worse (timers) 

– What resource allocations help (perf. ctrs + timers) 

• Successive rounds: 
– Which strategies were successful (pc + timers) 

– Predict success of overall plan (both + analytics) 
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Driving Towards a Desired Profile 

Dependent variable: Z-axis: Time in barrier (measured in terms of DGEMM register panels) 
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Penalize Reward Optimize 



Prioritizing Resources 

Panel Factorization Dominates How To Accelerate Critical Path 
• Performance counters information 

– High priority task is lagging 
– Lower priority tasks use conflicting 

resources 

• Synthesize performance counter 
information at correct (perhaps 
dynamic) granularity (task) 

• Throttle down the algorithm or 
priority of the lower priority tasks 

• Increase the expected performance 
of the higher priority task 
– Always critical path 
– But it’s resource priority was 

previously low 
– Larger “gang” for scheduling 
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Shifting Operation Type: Stencil 
Computations 

• Simple stencil computations 

• Tuning: unroll-and-jam + asm code scheduler 

– How far can you take this 

• How symmetric is your stencil 

• How many registers can you use/control 

– How far do you need to take it 

• Instruction mix on Blue Gene/P 

• Threading, synchronization, and instruction 
mix on Blue Gene/Q 
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Engineering tactics 

• Building block: 3-point stencil computation 

– Optimize then replicate into larger stencils 
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Why is tuning this computation on the 
BG/P PowerPC 450d difficult?  

• Utilizes features to improve efficiency 

– SIMDized fused floating point units 

– Multiple loads or fewer loads + shifts 

B 0 1 2 3 4 5 . . N 

A 0 1 2 3 4 5 . . N 

 
For (i=0; i<N; i++) 
  A[i] =  B[i] + B[i+1] 

Not Aligned 
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Example 

 
Python code 

Without interleaving – 19 cycles With interleaving – 13 cycles 

Generated code [ 0] fxpmul(rt=16, ra=31, rc=0) 
[ 0] -- Instruction unit in use: floating point 
[ 1] fxpmul(rt=17, ra=31, rc=1) 
[ 1] -- Instruction unit in use: floating point 
[ 2] fxpmul(rt=18, ra=31, rc=4) 
[ 2] -- Instruction unit in use: floating point 
. 
. 
[17] lfsdux(frt=2, ra=3, rb=5) 
[17] -- Instruction unit in use: load/store 
[18] -- Instruction unit in use: load/store 
[19] lfsdux(frt=3, ra=3, rb=5) 
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27-Point Stencil Results 

• Increasing arithmetic 
intensity (+) 

• Right mix of 
instructions (+) 

• Improving perform. 
model (+) 

• Uneven performance 
due to co-alignment 
effects (-) 

• "Optimizing the 
Performance of 
Streaming Numerical 
Kernels on the IBM 
Blue Gene/P PowerPC 
450“ (M.S. Thesis)  
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Architectural/Implementation 
Evolution 

Blue Gene/P 
• 2-way SIMD Operations 

• Dual-issue per thread 

– One thread per core 

• Rich Load/Store ISA 

• High main memory bw 

– Streaming important 

• 5 prefetch streams/core 

• 3 outstanding loads/core 

• 9 loads/8 shifts vs. 16 loads 

Blue Gene/Q 
• 4-way SIMD Operations 

• Single-Issue per thread 

– Dual-Issue per core 

• Rich Permute ISA 

• BW/FLOPS reduced 

– Blocking more important 

• 16 prefetch streams/core 

• 9 outstanding loads/core 

• 5 loads/4 perms vs. 16 loads 
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• Manage cache line/bank accesses: 
– Synchronize: layout was extremely careful, stencil driving, or skew 

– Async: between cores, drift may get multiple bank accesses (other within core) 

• Manage cache occupancy, stream count 
– Synchronized:  Explicit, “forced” implicit  

– Asynchronous: Merge kernels?, L1 blocking for worst case behavior 

 



Outline 

• Level of Ambition 
• Tabloid Programming 
• Performance Counters & Power Measurement 
• Case Studies 

– Heavy- vs. Lightweight Synchronization: DGEMM 
– Trade-offs in Synchronization: HPL Benchmark 
– Shifting Operation Type: Stencil Computations 
– Lanczos Iteration Methodology: s-Step and Pipeline 
– Interacting Kernels: A Simple Tuning Framework 

• Conclusions 

1/12/2012           ICERM 37 



Lanczos Iteration 

• Recursion relation 

 

 

 

 
 

• Global synch evaluating inner product 

• Latency must be paid at every iteration 
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Hiding the latency 

• The idea 
– Overlapping M-v multiplication and inner product 
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Hiding the latency 

• If the latency is dominating 
– e.g. inner product takes twice as long as M-v 

1/12/2012           ICERM 40 



Hiding the latency 

• The latency is paid only once 
• Deducing step is completely local 

– Only vector addition. Daxpy. 
– Small overhead 

• The algorithm depends on indirect evaluation of vector 
norm ( e.g. b ) 
– Numerical stability issue 

• Similar technique might be applied to CG 
– Numerical stability might be improved by clever method 

• Analogous “plumbing” was applied in the context of an 
optimization problem on Blue Gene/P 
– “Efficient high-precision matrix algebra on parallel architectures for 

nonlinear combinatorial optimization” 
– Currently using MPI/SPI approach 
– Exploring task-based libraries, including PFunc  
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Interacting Kernels: A Simple Tuning 
Framework 

• A symbolic execution framework 
– Target: Blue Gene/Q 

– With “hooks” for generic architecture 

• Some advantages of symbolic execution 

• Detailed knowledge of architecture 
– Straightforward (slow) architecture simulation 

– Time-stepping techniques help 

• Feedback to user (library writer, others) 
– Timings, color-coded accesses 
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Interacting Kernels: A Simple Tuning 
Framework 

• How does this relate to synchronization? 
– Engage multiple threads 

– Utilize multiple cores, introduce noise 

– Are they coordinated?  Should they be?  In what way? 

• Moderate success thus far 
– Scheduled new DGEMM kernels 

• Reflects potential  for cooperative prefetch, does not automate it 

– “Re-”scheduled ddcMD kernel (BG/P matching BG/L perf.) 

– Co-mingle two thread kernels under certain assumptions 
• Sometimes split, sometimes combine 
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High-Level Improvements Needed 

• Discovering patterns:  
– Shared L2 prefetch 

• Easy to see, does not happen every time, difficult to auto-discover 

– Similar schedules 
• By default, the system constructs 64 scheduled instruction streams 

– Sometimes this makes sense, but usually it does not 

– More intelligent use of “macro operators” 
• First, wrt data layouts (currently: “greedy-not-quite-stupid”) 

– The instruction streams only self schedule per thread 
• Information that a particular prefetch was wasted present, not used 

– Suggest “code fusion” 
• Register re-coloring 
• Barring that … summarize which threads could be fused 
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Practical Concerns: Runtime 

• The Timing is linear in the size of the array, but 
not practical for some goals 
– In[5]:= Timing[For[i=0,i<= 1000,i++,Rest[L2]];] 

• Out[5]= {3.775,Null} (* 3.8 seconds for 1000 steps!!! *) 

– In[6]:= Timing[For[i=0,i<= 1000000,i++,Rest[L1]];] 
• Out[6]= {1.919,Null} 

– In[7]:= Length[L2]/Length[L1] 
• Out[7]= 2048 

• Some fixes are simple 
– Associativity, homogenous core action/sharing, etc., 

but sometimes at odds with reality 
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Conclusions 

• Synchronization opportunities and trade-offs 
– Exchange information (+) 
– Provide a timing heartbeat (+ … for some cases) 
– Often things settle to a reasonable level  (-) 

• Task characterization and accumulation 
– Benefit to co-scheduling complementary tasks 

• And task characterization (chokepoints) 

– Benefit to co-scheduling identical tasks 
• Thread recruitment, dynamic ranks-per-node, etc. 

– Like to be able to break task encapsulation 
• Simple example: pull off a task “blob” …  

– Need to be able to gang schedule or push it back for better time 
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Conclusions 

• Descriptive, Predictive, Prescriptive Analytics 
might have a place in exascale HPC 

– You say those flops are free?  Intops? 

• Power might need to be considered as a 
parameter in lower-level codes (libraries) 

• Ideally, would like to control how far apart 
operations are without incurring crosstalk 

– Sometimes want them close, other times … no 
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Current Work 

• Code generator/tuner 
– Present focus, incorporating power estimation 

• GreenBLAS 

– Adding more instructions to repertoire 
• ASM, intrinsics, C-like (building blocks) 
• Cross-thread/core 

– Compressing information 
• Multiple time steps in generator 
• Useful patterns from performance counters+power 

• Exascale solvers 
– Range of applicability, stability and iteration issues 
– How to implement the underlying communication 
– Kernel coding and fusion 
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PFunc 

• Highly portable open-source shared-memory task parallel library for C/C++ 
• Some differentiating features from Cilk, TBB, and other Cilk-derivatives 

– Customizable task scheduling, task stealing, and task priorities 
– Cilk-style, FIFO, LIFO, Priority-based pre-included 
– Support for SPMD-style parallelization through task groups 
– Spawn tasks on specific queues, bind threads to processors 
– Move seamlessly from work-stealing to work-sharing 
– Tasks can have multiple parents; native support for DAG executions 
– Zero abstraction penalty ensured by using template programming 

• PFunc can execute DAGs similar to PLASMA and SuperMatrix 
– See ”Demand-driven execution of Static Directed Acyclic Graphs Using Task 

Parallelism” in HiPC 2009 --- demonstrates methodology for parallelizing a 
unsymmetric-pattern multifrontal algorithm for LU factorization with partial 
pivoting 
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Registers 
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Latency Hiding Conjugate 
Gradient 



Krylov Space 

• Spanned by vectors generated by successive 
applications of matrix A 

• Generation of those vectors requires only local 
communication 

• Orthonormalization requires inner products of those 
vectors which requires global communication 

• Here, the time unit is the time a single matrix vector 
multiplication takes. We denote the global 
communication latency as L. 
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Lanczos Iteration 

• Core part of CG 

• Method of orthonormalizing Krylov space for 
symmetric matrix 

• Simpler than CG 

– Recursion relation 
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Lanczos iteration II 

• The idea of hiding latency of inner product is 
to pre-calculate the inner product. 

• We define  

– Because of symmetry of the matrix 

 

– Using Lanczos recursion 
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Lanczos iteration III 
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Lanczos iteration III 
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Numerical instability 

• During the testing the new recursion, 
numerical instability has been detected. 

• Evaluation of a norm becomes negative 
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CG Iteration 
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CG iteration II 

• Residuals are orthogonal to each other. 

– Analogous to Lanczos iteraiton 

– ri recursion : 
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CG iteration III 

• Deducing 

 

 

 

 

 

• di-1Adi-1 is known from previous iteration and 
everything is on ri which is analogous to Lanczos 
vectors 
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CG Iteration IV 

• This iteration shows better numerical 
precision yet still worse than the standard CG 
iteration. 

• Maybe use restarting method more often. 

• More study is needed 
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