
Making Good Enough...Better:
Addressing the Multiple Objectives of High-Performance
Parallel Software with a Mixed Global-Local Worldview

John A. Gunnels
Research Staff Member/Manager
IBM T.J. Watson Research Center

Business Analytics & Mathematical Sciences

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 2

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 3

Level of Ambition

• Separation of concerns
– “First, you get a million dollars …”

• Run-time agnostic
– Task-based

• GCD, PFunc, PLASMA, StarSs/OMPSs, Supermatrix, etc.

– Traditional
• MPI, OpenMP, Pthreads, SHMEM, SPI, etc …

– PGAS
• CAF, Chapel, Fortress, Titanium, UPC, X10 …

• Examples
– Simple
– Results can be applied somewhat more broadly

1/12/2012 ICERM 4

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 5

Tabloid Programming

• Determine what is going on:
– In my neighborhood & in my world
– Where is the cut-off?

• Summarizing instrumentation data
– Core(s)/Thread(s) devoted to it?
– Descriptive, Predictive, and Prescriptive Analytics

• What would I like to do with the information
– Annotate tasks/alter function pointers/re-time
– Drive towards a profile (later)
– Let others know my condition (Social Media Prog.?)

• E.g. “doing error correction”

1/12/2012 ICERM 6

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 7

Performance Counters & Power
Measurement

• Performance counters
– Level of granularity (time, floorspace, etc.)

– Post mortem analysis vs. in-flight steering

• Why power measurement
– Synthesize info, can be fine-grained (Goal: Perf.)

– Exascale (Goal: … well … power reduction)
• To save power/minimize heat in aggregate or instantaneous

• Why both
– Can disambiguate cases otherwise identical

– Power is a shared resource (at a different level)

1/12/2012 ICERM 8

Shared Resource Hierarchy

Registers

L1 Cache

L2 Cache

Main Memory

Power Measurement

Power Supply, Network, Disk Drive, etc.

1/12/2012 ICERM 9

Shared Resource Hierarchy

Registers

L1 Cache

L2 Cache

Main Memory

Power Measurement

Power Supply, Network, Disk Drive, etc.

1/12/2012 ICERM 10

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 11

Case Studies

• DGEMM
– Synchronization strategies
– Hierarchical, high-performance

• HPL Benchmark
– Leveraging available data: a silver lining in synchronization
– Utilizing additional hardware features

• Stencil Computations
– Performance counters to guide bandwidth and instruction mix
– Potential for linking/merging threads and “deep” synchronization

• Lanczos Iteration Methodology
– s-Step and Pipeline: Reducing synchronization penalty, count, or both

• Auto-tuner
– Utility of off-line system
– A framework for the incorporation of new “operations” (atomics)

1/12/2012 ICERM 12

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 13

Heavy- vs. Lightweight
Synchronization: DGEMM

• Goal: Fewer explicit synchronization points
– Explicit vs. implicit synchronization

– Skew and anti synchronization

• Implicit synchronization through cooperation
– Stitching threads and cores

• At various levels of the cache hierarchy

– Interleaving nodes lower on the pyramid

• What are the benefits
– Realized

– Potential

1/12/2012 ICERM 14

15 1/12/2012 ICERM

BlueGene/Q Compute chip
• 360 mm² Cu-45 technology (SOI)

– ~ 1.47 B transistors

• 16 user + 1 service processors
–plus 1 redundant processor
–all processors are symmetric
–each 4-way multi-threaded
–64 bits PowerISA™

–1.6 GHz
–L1 I/D cache = 16kB/16kB
–L1 prefetch engines
–each processor has Quad FPU
 (4-wide double precision, SIMD)

–peak performance 204.8 GFLOPS@55W

• Central shared L2 cache: 32 MB

–eDRAM
–multiversioned cache

will support transactional memory,
 speculative execution.

–supports atomic ops

• Dual memory controller
–16 GB external DDR3 memory
–1.33 Gb/s
–2 * 16 byte-wide interface (+ECC)

• Chip-to-chip networking

–Router logic integrated into BQC chip.

• External IO
–PCIe Gen2 interface

System-on-a-Chip design : integrates processors,

memory and networking logic into a single chip

16 1/12/2012 ICERM

BG/Q Processor Unit

• A2 processor core
– Mostly same design as in PowerEN™ chip

– Implements 64-bit PowerISA™

– Optimized for aggregate throughput:

• 4-way simultaneously multi-threaded (SMT)

• 2-way concurrent issue 1 XU (br/int/l/s) + 1 FPU

• in-order dispatch, execution, completion

– L1 I/D cache = 16kB/16kB

– 32x4x64-bit GPR

– Dynamic branch prediction

– 1.6 GHz @ 0.8V

• Quad FPU
– 4 double precision pipelines, usable as:

• scalar FPU

• 4-wide FPU SIMD

• 2-wide complex arithmetic SIMD

– Instruction extensions to PowerISA

– 6 stage pipeline

– 2W4R register file (2 * 2W2R) per pipe

– 8 concurrent floating point ops (FMA)
 + load + store

– Permute instructions to reorganize vector data

• supports a multitude of data alignments

QPU: Quad FPU

Set of 8x8 Outer Products on BG/Q
Basis of DGEMM

0 1

2 3 2,3 2,3 2,3 2,3

0,1 0,1 0,1 0,1

0,2

0,2

0,2

0,2

1,3

1,3

1,3

1,3

1/12/2012 ICERM 17

Streaming 16x16 Outer Products on BG/Q
Basis of a Better DGEMM

0 1

2 3 2,3 2,3 2,3 2,3

0,1 0,1 0,1 0,1

0,2

0,2

0,2

0,2

1,3

1,3

1,3

1,3

1/12/2012 ICERM 18

Streaming 16x16 Outer Products on BG/Q
Basis of a Better DGEMM

0 1

2 3 2,3 2,3 2,3 2,3

0,1 0,1 0,1 0,1

0,2

0,2

0,2

0,2

1,3

1,3

1,3

1,3

• Of course, one can
go further
– Threads 0,1

prefetch A for 2 & 3
– Threads 0,2

prefetch B for 1 & 3
– Interleave the data

(every thread
prefetches every 4th
expected request)
• DGEMM specific

1/12/2012 ICERM 19

Streaming 16x16 Outer Products on BG/Q
Basis of a Self-Synchronizing DGEMM

0 1

2 3 2,3 2,3 2,3 2,3

0,1 0,1 0,1 0,1

0,2

0,2

0,2

0,2

1,3

1,3

1,3

1,3

What happens if Thread
1 falls behind?

Thread
1 Lags

Thread
0 and 3

Lag

Thread
2

Slows

Thread
1

Caches
Up**

Await
Next
Issue

1/12/2012 ICERM 20

Streaming 16x16 Outer Products on BG/Q
A More Performance-Robust DGEMM

2,3 2,3 2,3 2,3

0,1 0,1 0,1 0,1

0,2

0,2

0,2

0,2

1,3

1,3

1,3

1,3

1/12/2012 ICERM 21

Benefits of Layered Implicit
Synchronization

• Extremely infrequent explicit barriers
• Fewer instructions executed

– No “expected false” prefetches

• 4 bytes/cycle/core L2 bandwidth
– More reliably

• Similar approach
– Quadruple SIMD length/double bandwidth

• |loads| <= |FMAs| ((1x4)x(32x10) kernels)
• Could be fed by an 8 byte/cycle L2
• Instruction mix continues to allow explicit prefetch

• But is it only good for DGEMM?
– Cooperative prefetching is more generally applicable
– Works with hand-tuned ASM (need a lot of details to work well)
– Some parts better-suited for compilers (detail management)

1/12/2012 ICERM 22

Skew and Anti Synchronization

• Skew synchronization
– Goal: smoothing burst requests on a shared resource

– Implement: differential blocking, kernel/method used

– Result: staggering of task initialization/completion

• Anti synchronization
– Akin to hands-on, even cycle-by-cycle, skewing

– Enforce staggering, usually on a finer grain
• Through implicit or explicit means (simple example …)

– Thread 0 prefetches 100 cycles ahead of thread 1

– Thread 1 prefetches 8 cycles ahead of thread 0

1/12/2012 ICERM 23

Shared Resource Hierarchy

Registers

L1 Cache

L2 Cache

Main Memory

Power Measurement

Power Supply, Network, Disk Drive, etc.

• Cooperative
Prefetching
– Including Disk

• Yielding Power Tokens
– Upon barrier arrival
– Exascale/load bal.

• Keep hw together
– But not too close

1/12/2012 ICERM 24

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 25

Trade-offs in Synchronization: HPL
Benchmark

• Background: How is HPL asynchronous?
• What is the downside to synchronization

– Performance

• What are the potential benefits
– Multiple link usage/5D torus
– Consistent numerical results

• Steps to reduce the disadvantages
– What do timers tell us
– Performance counters
– Power measurements

1/12/2012 ICERM 26

What do we know and when do we
know it?

• And how do we know it?

• A single step:
– That panel factorization is a bottleneck (timers)

• Successive iterations:
– Panel factorization is getting worse (timers)

– What resource allocations help (perf. ctrs + timers)

• Successive rounds:
– Which strategies were successful (pc + timers)

– Predict success of overall plan (both + analytics)

1/12/2012 ICERM 27

Driving Towards a Desired Profile

Dependent variable: Z-axis: Time in barrier (measured in terms of DGEMM register panels)

1/12/2012 ICERM 28

Penalize Reward Optimize

Prioritizing Resources

Panel Factorization Dominates How To Accelerate Critical Path
• Performance counters information

– High priority task is lagging
– Lower priority tasks use conflicting

resources

• Synthesize performance counter
information at correct (perhaps
dynamic) granularity (task)

• Throttle down the algorithm or
priority of the lower priority tasks

• Increase the expected performance
of the higher priority task
– Always critical path
– But it’s resource priority was

previously low
– Larger “gang” for scheduling

1/12/2012 ICERM 29

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 30

Shifting Operation Type: Stencil
Computations

• Simple stencil computations

• Tuning: unroll-and-jam + asm code scheduler

– How far can you take this

• How symmetric is your stencil

• How many registers can you use/control

– How far do you need to take it

• Instruction mix on Blue Gene/P

• Threading, synchronization, and instruction
mix on Blue Gene/Q

 1/12/2012 ICERM 31

Engineering tactics

• Building block: 3-point stencil computation

– Optimize then replicate into larger stencils

1/12/2012 ICERM 32

Why is tuning this computation on the
BG/P PowerPC 450d difficult?

• Utilizes features to improve efficiency

– SIMDized fused floating point units

– Multiple loads or fewer loads + shifts

B 0 1 2 3 4 5 . . N

A 0 1 2 3 4 5 . . N

For (i=0; i<N; i++)
 A[i] = B[i] + B[i+1]

Not Aligned

1/12/2012 ICERM 33

Example

Python code

Without interleaving – 19 cycles With interleaving – 13 cycles

Generated code [0] fxpmul(rt=16, ra=31, rc=0)
[0] -- Instruction unit in use: floating point
[1] fxpmul(rt=17, ra=31, rc=1)
[1] -- Instruction unit in use: floating point
[2] fxpmul(rt=18, ra=31, rc=4)
[2] -- Instruction unit in use: floating point
.
.
[17] lfsdux(frt=2, ra=3, rb=5)
[17] -- Instruction unit in use: load/store
[18] -- Instruction unit in use: load/store
[19] lfsdux(frt=3, ra=3, rb=5)

1/12/2012 ICERM 34

27-Point Stencil Results

• Increasing arithmetic
intensity (+)

• Right mix of
instructions (+)

• Improving perform.
model (+)

• Uneven performance
due to co-alignment
effects (-)

• "Optimizing the
Performance of
Streaming Numerical
Kernels on the IBM
Blue Gene/P PowerPC
450“ (M.S. Thesis)

1/12/2012 ICERM 35

Architectural/Implementation
Evolution

Blue Gene/P
• 2-way SIMD Operations

• Dual-issue per thread

– One thread per core

• Rich Load/Store ISA

• High main memory bw

– Streaming important

• 5 prefetch streams/core

• 3 outstanding loads/core

• 9 loads/8 shifts vs. 16 loads

Blue Gene/Q
• 4-way SIMD Operations

• Single-Issue per thread

– Dual-Issue per core

• Rich Permute ISA

• BW/FLOPS reduced

– Blocking more important

• 16 prefetch streams/core

• 9 outstanding loads/core

• 5 loads/4 perms vs. 16 loads

1/12/2012 ICERM 36

• Manage cache line/bank accesses:
– Synchronize: layout was extremely careful, stencil driving, or skew

– Async: between cores, drift may get multiple bank accesses (other within core)

• Manage cache occupancy, stream count
– Synchronized: Explicit, “forced” implicit

– Asynchronous: Merge kernels?, L1 blocking for worst case behavior

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 37

Lanczos Iteration

• Recursion relation

• Global synch evaluating inner product

• Latency must be paid at every iteration

1/12/2012 ICERM 38

Hiding the latency

• The idea
– Overlapping M-v multiplication and inner product

1/12/2012 ICERM 39

Hiding the latency

• If the latency is dominating
– e.g. inner product takes twice as long as M-v

1/12/2012 ICERM 40

Hiding the latency

• The latency is paid only once
• Deducing step is completely local

– Only vector addition. Daxpy.
– Small overhead

• The algorithm depends on indirect evaluation of vector
norm (e.g. b)
– Numerical stability issue

• Similar technique might be applied to CG
– Numerical stability might be improved by clever method

• Analogous “plumbing” was applied in the context of an
optimization problem on Blue Gene/P
– “Efficient high-precision matrix algebra on parallel architectures for

nonlinear combinatorial optimization”
– Currently using MPI/SPI approach
– Exploring task-based libraries, including PFunc

1/12/2012 ICERM 41

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 42

Interacting Kernels: A Simple Tuning
Framework

• A symbolic execution framework
– Target: Blue Gene/Q

– With “hooks” for generic architecture

• Some advantages of symbolic execution

• Detailed knowledge of architecture
– Straightforward (slow) architecture simulation

– Time-stepping techniques help

• Feedback to user (library writer, others)
– Timings, color-coded accesses

1/12/2012 ICERM 43

Interacting Kernels: A Simple Tuning
Framework

• How does this relate to synchronization?
– Engage multiple threads

– Utilize multiple cores, introduce noise

– Are they coordinated? Should they be? In what way?

• Moderate success thus far
– Scheduled new DGEMM kernels

• Reflects potential for cooperative prefetch, does not automate it

– “Re-”scheduled ddcMD kernel (BG/P matching BG/L perf.)

– Co-mingle two thread kernels under certain assumptions
• Sometimes split, sometimes combine

1/12/2012 ICERM 44

High-Level Improvements Needed

• Discovering patterns:
– Shared L2 prefetch

• Easy to see, does not happen every time, difficult to auto-discover

– Similar schedules
• By default, the system constructs 64 scheduled instruction streams

– Sometimes this makes sense, but usually it does not

– More intelligent use of “macro operators”
• First, wrt data layouts (currently: “greedy-not-quite-stupid”)

– The instruction streams only self schedule per thread
• Information that a particular prefetch was wasted present, not used

– Suggest “code fusion”
• Register re-coloring
• Barring that … summarize which threads could be fused

1/12/2012 ICERM 45

Practical Concerns: Runtime

• The Timing is linear in the size of the array, but
not practical for some goals
– In[5]:= Timing[For[i=0,i<= 1000,i++,Rest[L2]];]

• Out[5]= {3.775,Null} (* 3.8 seconds for 1000 steps!!! *)

– In[6]:= Timing[For[i=0,i<= 1000000,i++,Rest[L1]];]
• Out[6]= {1.919,Null}

– In[7]:= Length[L2]/Length[L1]
• Out[7]= 2048

• Some fixes are simple
– Associativity, homogenous core action/sharing, etc.,

but sometimes at odds with reality

1/12/2012 ICERM 46

Outline

• Level of Ambition
• Tabloid Programming
• Performance Counters & Power Measurement
• Case Studies

– Heavy- vs. Lightweight Synchronization: DGEMM
– Trade-offs in Synchronization: HPL Benchmark
– Shifting Operation Type: Stencil Computations
– Lanczos Iteration Methodology: s-Step and Pipeline
– Interacting Kernels: A Simple Tuning Framework

• Conclusions

1/12/2012 ICERM 47

Conclusions

• Synchronization opportunities and trade-offs
– Exchange information (+)
– Provide a timing heartbeat (+ … for some cases)
– Often things settle to a reasonable level (-)

• Task characterization and accumulation
– Benefit to co-scheduling complementary tasks

• And task characterization (chokepoints)

– Benefit to co-scheduling identical tasks
• Thread recruitment, dynamic ranks-per-node, etc.

– Like to be able to break task encapsulation
• Simple example: pull off a task “blob” …

– Need to be able to gang schedule or push it back for better time

1/12/2012 ICERM 48

Conclusions

• Descriptive, Predictive, Prescriptive Analytics
might have a place in exascale HPC

– You say those flops are free? Intops?

• Power might need to be considered as a
parameter in lower-level codes (libraries)

• Ideally, would like to control how far apart
operations are without incurring crosstalk

– Sometimes want them close, other times … no

1/12/2012 ICERM 49

Current Work

• Code generator/tuner
– Present focus, incorporating power estimation

• GreenBLAS

– Adding more instructions to repertoire
• ASM, intrinsics, C-like (building blocks)
• Cross-thread/core

– Compressing information
• Multiple time steps in generator
• Useful patterns from performance counters+power

• Exascale solvers
– Range of applicability, stability and iteration issues
– How to implement the underlying communication
– Kernel coding and fusion

1/12/2012 ICERM 50

Acknowledgments
• Argonne National Laboratory

– Jed Brown*

• KAUST
– Aron Ahamdia
– David Keyes*
– Tareq Malas

• Lawrence Livermore National
Laboratory
– Bor Chan
– Erik Draeger
– James Glosli
– David Richards

• London School of Economics
– Gregory Sorkin

• Penn State University
– Susan Margulies

• University of Michigan
– Jon Lee

• IBM Research
– Vernon Austel
– Haim Avron
– Fabio Checconi
– Alexandre Eichenberger
– Anshul Gupta
– Prabhanjan Kambadur
– Changhoan Kim
– Fabrizio Petrini
– James Sexton*
– Robert Walkup

• The errors, oversights, and
gaffes introduced are, of
course, solely owned by the
speaker

*Workshop attendee

1/12/2012 ICERM 51

Acknowledgements

• The Blue Gene/Q project has been supported and
partially funded by Argonne National Laboratory and
the Lawrence Livermore National Laboratory on behalf
of the United States Department of Energy, under
Lawrence Livermore National Laboratory Subcontract
No. B554331

• Investigation into Blue Gene/P architectural simulation,
nonlinear optimization, stencil computations, and
asynchronous solvers was funded by The King Abdullah
University of Science and Technology (KAUST)

1/12/2012 ICERM 52

Backup

Lasciate ogne speranza,
voi ch'entrate

Making Good Enough...Better:
Addressing the Multiple Objectives of High-Performance
Parallel Software with a Mixed Global-Local Worldview

John A. Gunnels
Research Staff Member/Manager
IBM T.J. Watson Research Center

Business Analytics & Mathematical Sciences

PFunc

• Highly portable open-source shared-memory task parallel library for C/C++
• Some differentiating features from Cilk, TBB, and other Cilk-derivatives

– Customizable task scheduling, task stealing, and task priorities
– Cilk-style, FIFO, LIFO, Priority-based pre-included
– Support for SPMD-style parallelization through task groups
– Spawn tasks on specific queues, bind threads to processors
– Move seamlessly from work-stealing to work-sharing
– Tasks can have multiple parents; native support for DAG executions
– Zero abstraction penalty ensured by using template programming

• PFunc can execute DAGs similar to PLASMA and SuperMatrix
– See ”Demand-driven execution of Static Directed Acyclic Graphs Using Task

Parallelism” in HiPC 2009 --- demonstrates methodology for parallelizing a
unsymmetric-pattern multifrontal algorithm for LU factorization with partial
pivoting

1/12/2012 ICERM 55

Registers

L1 Cache

L2 Cache

Main Memory

Power Measurement

Power Supply

1/12/2012 ICERM 56

Registers

L1 Cache

L2 Cache

Main Memory

Power Measurement

Power Supply, Disk Drive, etc.

1/12/2012 ICERM 57

Latency Hiding Conjugate
Gradient

Krylov Space

• Spanned by vectors generated by successive
applications of matrix A

• Generation of those vectors requires only local
communication

• Orthonormalization requires inner products of those
vectors which requires global communication

• Here, the time unit is the time a single matrix vector
multiplication takes. We denote the global
communication latency as L.

1/12/2012 ICERM 59

Lanczos Iteration

• Core part of CG

• Method of orthonormalizing Krylov space for
symmetric matrix

• Simpler than CG

– Recursion relation

1/12/2012 ICERM 60

Lanczos iteration II

• The idea of hiding latency of inner product is
to pre-calculate the inner product.

• We define

– Because of symmetry of the matrix

– Using Lanczos recursion

1/12/2012 ICERM 61

Lanczos iteration III

1/12/2012 ICERM 62

Lanczos iteration III

1/12/2012 ICERM 63

Numerical instability

• During the testing the new recursion,
numerical instability has been detected.

• Evaluation of a norm becomes negative

1/12/2012 ICERM 64

CG Iteration

1/12/2012 ICERM 65

CG iteration II

• Residuals are orthogonal to each other.

– Analogous to Lanczos iteraiton

– ri recursion :

1/12/2012 ICERM 66

CG iteration III

• Deducing

• di-1Adi-1 is known from previous iteration and
everything is on ri which is analogous to Lanczos
vectors

1/12/2012 ICERM 67

CG Iteration IV

• This iteration shows better numerical
precision yet still worse than the standard CG
iteration.

• Maybe use restarting method more often.

• More study is needed

1/12/2012 ICERM 68

